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Abstract: In this paper we present a method to find the solution of time-delay optimal control systems using 

Fourier series. The method is based upon expanding various time functions in the system as their truncated 

Fourier series. Operational matrices of integration and delay are presented and are utilized to reduce the 

solution of time-delay control systems to the solution of algebraic equations. Illustrative examples are included 

to demonstrate the validity and applicability of the technique.  
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I. Introduction 
The control of systems with time delay has been of considerable concern. Delays occur frequently in 

biological, chemical, transportation, electronic, communication, manufacturing and power systems [5]. Time-

delay and multi-delay control systems are therefore very important classes of systems whose control and 

optimization have been of interest to many investigators [2-6]. Orthogonal functions (OFs) and polynomial series 

have received considerable attentions in dealing with various problems of dynamic systems. Much progress has 

been made towards the solution of delay systems. The approach is that of converting the delay-differential 

equation govering the dynamical systems to an algebraic form through the use of an operational matrix of 

integration . The matrix  can be uniquely determined based on the particular OFs. Special attentions has been 

given to applications of Walsh functions [3], block-pulse functions[12], Laguerre polynomials [6], Legendre 

polynomials [7], Chebyshev polynomials[4] and Fourier series [9]. The available sets of OFs can be divided into 

three classes. The first includes a set of piecewise constant basis functions (PCBFs) (e.g. Walsh, block-pulse, 

etc.). The second consists of a set of orthogonal polynomials (OPs) (e.g. Laguerre, Legendre, Chebyshev, etc). 

The third is the widely used set of sine-cosine functions (SCFs) in the form of Fourier series. In this paper we use 

Fourier series method to solve time delay control systems. The method consists of reducing the delay problem to 

a set of algebraic equations by first expanding the candidate function as a Fourier series with unknown 

coefficients. These Fourier series are first introduced. The operational matrices of integration, delay and product 

are given. These matrices are then used to evaluate the coefficients of the Fourier series for the solution of time 

delay control systems. 

 

II. Fourier series and their properties: 
2.1. Expansion by Fourier series: 

 A function )(tf  belongs to the apace ][0,2 LL  may be expanded by Fourier series as follows[11]:  

},
22

{=)( *

1=

0
L

tn
sina

L

tn
cosaatf nn

n






                                                                                         (1) 

 where  

                                 ,)(
1

=
0

0 dttf
L

a
L

  

 ,1,2,3,=,
2

)(
2

=
0

ndt
L

tn
costf

L
a

L

n


  

 .1,2,3,=,
2

)(
2

=
0

* ndt
L

tn
sintf

L
a

L

n


  

 By truncating the series (1) up to 1)(2 r th term we can abtain an approximation for )(tf  as follows:  
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 It can be easily seen that the elements of )(t  in interval )(0,L  are orthogonal. 

 

2.2. Operational matrices of integration, product and delay: 

The integration of )(t  in (3) can be approximated by )(t  as follows:  

 )()(
0

tPdss
t

   

 where P  is the operational matrix of integration of order 1)(21)(2  rr and is given by[8,10]:  
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Furthermore we have:  
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 one can esealy show that )(
~

=)()( tAAtt T   where A
~

 is called the product operational matrix for the so 

called vector A  in (3) and is given:  
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 By integrating of (4) and considering the orthogonality components of )(t  we have:  
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 Now we are going to derive operational delay matrix. From calculus we know that:  

 ,=)(  sincoscossinsin   
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 so if   is any delay(or lag) for the functions )(t  and )(* t  then we have:  
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 Now it is esealy to show that ),(=)( tDt    where D  is delay operational matrix and have the 

following form:  



Mohammad Hadi Farahi Int. Journal of Engineering Research and Applications         www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 5), June 2014, pp.217-226 

 www.ijera.com                                                                                                                             220 | P a g e  

.

)
2

(00)
2

(000

0)
4

(00)
4

(00

00)
2

(00)
2

(0

)
2

(00)
2

(000

0)
4

(00)
4

(00

00)
2

(00)
2

(0

0000001

=



















































L

r
cos

L

r
sin

L
cos

L
sin

L
cos

L
sin

L

r
sin

L

r
cos

L
sin

L
cos

L
sin

L
cos

D

































 

 

III. Problem statement 
Consider the following quadratic time-independent delay control system:  

dttRututQxtxtSxtxJ TTf
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 (For the time being, assume that the matrices DCBA ,,,  are constant but the result can be extended to time 

varying systems by appropriate changes) where R  is symmetric positive definite and SQ,  are positive 

semidefinite matrices, 
lRtx )( , 

qRtu )(  are state and control vectores respectively and DCBA ,,,  are 

matrices of appropriate dimensions, 0x  is a constant specified vector, and )(),( tt   are arbitrary known 

functions. The problem is to find )(tx  and )(tu , Lt 0 , satisfying (8)-(11) while minimizing (7). 

Assume that  
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is true to have ),(=)(=)( tGttx T   where 
TG  is the Fourier series coefficient of )(  t . Now 
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 The integration of (8) from 0  to t  and using of (9) gives  



Mohammad Hadi Farahi Int. Journal of Engineering Research and Applications         www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 5), June 2014, pp.217-226 

 www.ijera.com                                                                                                                             221 | P a g e  

,)()()()(=)(
00000

dssuDdssuCdssxBdssxAdssx
ttttt

                                          (14) 

 or equivalently  

 dssxBdssxBdssxAxtx
tt

)()()(=(0))(
00






   

.)()()(
00

dssuDdssuDdssuC
tt






                                                                    (15) 

 Now, from (12) and (13) we have:  
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 Thus (15) reduces to  

 )()()()(=)()( 0 tZDBXtPDBXtZBGtPAXtXtX TTTTTT     

).()()()( tZDDUtPDDUtZDHtPCU TTTT                                                 (18) 

 By deleting )(t  from both sides of (18) and ordering we conclude that:  
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 By substituting the Fourier series in ( J ) we have  
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 The optimal control problem has now been reduced to a parameter optimization problem which can be stated as 

follows. Find X  and U  so that ),( UXJ  is minimized subject to the constraints in Eq. (19). 

Let  
** ),(=),,( CUXJUXJ T                                                                                                  (21) 

 where the vector   represents the unknown Lagrange multipliers, then the necessary conditions for stationary 

are given by  
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Remark1. Note that if delays in state and control vectors aren’t the same, then solving the system is the same as 

previous but we have two or more delay operational matrices. 

 

IV. Illustrative Examples: 
In this section two examples are given to demonstrate the applicability, efficiency and accuracy of our 

proposed method. 

 

4.1. Example 1: 

 Consider the following system [13]  
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 Here, we solve the same problem by using of Fourier series. Note that in third example delay is applied on state 

only, and 1= . Suppose that  

 ),(=(0)),(=)(),(=)( 0 tXxtUtutXtx TTT   

 where 0),(,, XtUX TT   are defined previously. If we integrate (24) from 0  to t  and use (12)-(13)we have  
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 By deleting )(t  from both sides and ordering we conclude that:  
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 By substitution the Fourier series in (23) for J  we have  

 dtUttUXttXJ TTTT })()()()({=
1
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 where E  is defined in (6). Thus we have redused the system as follows  

 EUUEXXJ TT =min  

 0==. 0

* PUZDXPDXZGXXCtoS TTTTTT    

 Approximate solutions of )(),( tutx  with 25=r  are shown in Fig.1. The value of J  is 1.62421313.  
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Figure  1: State vector x(t) and control u(t) for r=25 in Example 1 

   

4.2. Example 2: 

Consider the following system [8,13]  
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 Here we have different delays in state( 1/3=1 ) and control( 2/3=2 ). Suppose that  
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 where 0),(,, XtUX TT   are defined previously. If we integrate (26) from 0  to t  and use (12)-(13) we have  
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 By substitution the Fourier series in (23) for J  we have  
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 where E  was defined in (6). now we have redused system as follows  
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 Approximate solutions of )(),( tutx  with 25=r  are shown in Fig.2. the value of J  is 0.35944042 (In [3], 

the value of J  is 0.3731).  

 
Figure  2: State vector x(t) and control u(t) for r=25 in Example 2 

   

4.3. Example 3: 

 Consider the following system[1,3]  
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2),(1)(=)(.  tutxtxts                                                                                                          (28) 
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 Here, the delays are 1=1  for state and 2=2  for control vectors, respectively. Suppose that  
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 If we integrate (28) from 0  to t  then  
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 By substitution the Fourier series and simplifying, we obtain  
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 By substitution the Fourier series for J  we have  
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 where E  is defined in (6). So the delay optimal control (27-28) now is reduced to the following optimazation 

problem  
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 Approximate solutions of )(),( tutx  with 30=r  are shown in Fig.3. the value of J  is 2.3496 while the 

exact value is 
1

13
2

2
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e
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Figure  3: State vector x(t) and control u(t) for r=30 in Example 3 

 

V. Conclusions 
Using Fourier series, a simple and computational method for solving time delay optimal problems is 

considered. The method is based upon reducing a nonlinear time delay optimal control problem to an nonlinear 

programming problem. The unity of the function of orthogonality for Fourier series and the simplicity of 

applying delays in Fouries series are great merits that make the approach very attractive and easy to use. 

Although the method is simple, by solving various examples, accuracy in comparison of the other methods can 

be found.  
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